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Abstract

In this article we study the phase transition phenomenon for the Ising
model under the action of a non-uniform external magnetic field. We show
that the Ising model on the hypercubic lattice with a summable magnetic
field has a first-order phase transition and, for any positive (resp. negative)
and bounded magnetic field, the model does not present the phase transition
phenomenon whenever lim inf hi > 0, where h = (hi)i∈Zd is the external
magnetic field.

1 Introduction

The Lee-Yang theorem [10] is one of the most revisited results in Statistical Me-
chanics [11, 12, 13], especially because of its application to the study of phase
transition phenomena. One consequence of this theorem is that for any nonzero
uniform magnetic field, i.e. h = (hi)i∈Zd , hi = h ∈ R\{0} for all i ∈ Z

d and
β = 1/kT , the ferromagnetic (J > 0) Ising model on Z

d has an unique Gibbs
measure in the thermodynamic limit, independently of the boundary conditions.

In this paper we consider more general models where the magnetic field h

is not supposed to be uniform. For such models the Lee-Yang Theorem is still
valid, and a natural question is to ask if for these models the Lee-Yang Theorem
still implies the absence of phase transition. The question of the uniqueness of
the Gibbs measure in a non-uniform positive magnetic field it was considered by
Georgii [6] and Fontes and Neves [3]. They considered the model with a non-
negative random field of positive mean, and proved that for all temperatures that
there exists a unique Gibbs state. Here, in the Theorem 4 we prove uniqueness
of the Gibbs states at all temperatures for all models for which lim inf hi > 0 (
no average assumption is required for the fields hi), showing that the Lee-Yang
Theorem, in this case, still implies the absence of phase transition. Although we
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present a proof for Theorem 4 in the hypercubic lattice, the same argument works
for any connected amenable quasi-transitive graph with bounded degree.

It is well known that the Ising model with postive magnetic field can present
phase transition depending on the graph structure of the model. Jonasson and
Steif in [7] showed that the Lee-Yang Theorem does not imply the absence of a
first-order phase transition for this model in any nonamenable graph. Basuev in [1]
obtained the same result for a class of amenable but not quasi-transitive graphs.
In this paper, assuming that the magnetic field decays to zero, we obtain the
same result for hypercubic lattices, which are examples of amenable and quasi-
transitive graphs. In other words, even with the magnetic field taking positive
values at all sites of the hypercubic lattice, we prove that the Ising model can
present a first-order phase transition.

2 Preliminaries and Main Results

Consider the distance between x and y on Z
d given by ‖x − y‖ =

∑d
i=1 |xi − yi|

and, for any finite Λ ⊂ Z
d, denote by ∂Λ the set of sites in Z

d whose distance
to Λ is equal to 1. The energy in Λ of each configuration σ ∈ Ω ≡ {−1,+1}Z

d

satisfying the boundary condition ω ∈ Ω in Λ (ω b.c.), that is, σi = ωi ∀ i ∈ Z
d\Λ,

is given by the Hamiltonian

Hω
Λ(σ) = −

J

2

∑

〈i,j〉

σiσj −
∑

i∈Λ

hiσi, (1)

where 〈i, j〉 denotes the set of ordered pairs in Λ ∪ ∂Λ of nearest neighbors. For
J > 0 and h = (hi)i∈Zd the Hamiltonian defines a ferromagnetic Ising model with
external field h.

The Gibbs measure in Λ with ω b.c. is the probability measure on (Ω,F),
where F is the sigma-algebra generated by the cylinder sets given by

µβ,h,ω
Λ (σ) =

e−βHω
Λ (σ)

Zω
Λ

(2)

if σ satisfies the ω b.c. and zero otherwise. The normalization factor is the
standard partition function

Zω
Λ =

∑

σ

e−βHω
Λ (σ) (3)

with the sum over all configurations σ satisfying the ω b.c.
We denote by Gβ,h the set of Gibbs measures given by the closed convex hull

of the set of weak limits:

µβ,h,ω = w − lim
ΛnրZd

µβ,h,ω
Λn

(4)

where Λn ⊂ Λn+1 and ω runs over all boundary conditions.
We say that there is a first-order phase transition when the set Gβ,h contains

more than one measure, see [2, 5]. In the case of a non-zero uniform field, the
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Lee-Yang theorem can be used to prove that the analyticity of the pressure with
respect to the parameter h is equivalent to saying that the system has no phase
transition, see [17].

We write h ∈ ℓ1(Zd) when ‖h‖1 =
∑

i∈Zd |hi| < ∞ and h ∈ ℓ∞(Zd) when h is
bounded, that is, supk∈Zd |hk| < ∞.

The paper is organized as follows: Our main result is presented in Section 3,
roughly speaking it states that, if the external field h is summable on Z

d, that
is, h ∈ ℓ1(Zd), then the model has a first-order phase transition. This result is
obtained by a Peierls-type argument, based on contours already used in [16, 18]
and a cancelation argument for clusters of contours with opposite signs.

In Section 4, we adress the question of non-summable h. We show that, if we
have lim inf hi > 0 (similarly for lim suphi < 0), then the system has no first-order
phase transition. We remark that although this fact is pretty obvious, from the
physical point of view, the arguments we found in the literature are based upon
translation-invariance [9]. For a general ℓ∞(Zd) magnetic field it is not clear that
we can use those techniques. By controlling the Radon-Nikodyn derivative we
show how to deal with the non-invariant case.

3 The expansion in contours and the phase transition

The arguments in this section can be generalized for higher dimensions, we take
dimension 2 for simplicity. We will describe roughly the contours in Z

2, for de-
tails the readers can see [16, 18]. This approach uses a bijection between finite
collections of contours in Z

2∗ = Z
2+(1/2, 1/2) and configurations with some fixed

boundary condition. Without loss of generality, we always suppose that the finite
set Λ is a square. This fact helps us to assure that, if we have a finite number of
contours in the dual set of Λ and already fixed a boundary condition, then there
is a configuration associated to these contours, see lemma 2.1.2 [18].

Theorem 1. If the magnetic field h in the hamiltonian in (1) belongs to ℓ1(Z
2),

then the model presents a phase transition when J > 3‖h‖1.

Proof: let Λ ⊂ Z
2 be a finite set and suppose initially that hi ≥ 0 ∀ i ∈ Z

2. It
follows from the second Griffiths inequality that

〈σi〉
β,h,+
Λ ≥ 〈σi〉

β,0,+
Λ = 1− 2µβ,0,+

Λ ({σi = −1}),

where 0 is the null magnetic field. Using this lower bound and the following
standard inequality (see [15] page 170 for details)

µβ,0,+
Λ ({σi = −1}) ≤ c(β) :=

∞
∑

n=4

(2n + 3)3n−1e−2βJn,

since clearly c(β) → 0, uniformly in Λ when β → ∞, we get that

lim
β→∞

〈σi〉
β,h,+ = 1. (5)
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The next step is to show that limβ→∞〈σi〉
β,h,− = −1. For this, it will be

convenient to consider the Hamiltonian of the Ising model with – b.c. given by

H−
Λ (σ) = −

∑

〈i,j〉

J

2
(σiσj − 1)−

∑

i∈Λ

hi(σi + 1). (6)

Note that this normalization does not change the measure µβ,h,−
Λ .

We will identify Z
2 with the subset of R2 of integer coordinates. Fix a finite

set Λ ⊂ Z
2, to each site i of Λ we associate the dual plaquette p∗(i) having i at its

center. We call plaquettes the unit squares in R
2 whose corners are in Z

2∗. The
dual set Λ∗ of Λ is the subset of Z2∗ of the corners of p∗(i), where i is some site of
Λ.

For each configuration σΛ satisfying the – b.c. we will associate a family of
contours as follows: for each pair of nearest neighbors sites in σΛ, where we have
opposite signs, we consider the unit segment e joining the two sites. The dual
segment e∗ will be the unit segment orthogonal to e passing through the middle
point of e, and joining the two sites of Λ∗ that are closest to that middle point.

The union of these dual unit segments, called edges, will form closed curves in
R
2 such that the sites in Λ∗ will have degree 0, 2 or 4 and, using some rule we can

“cut”the corner when the degree is 4, see [18] for details.
This process give us a bijection between the configurations satisfying – b.c.

and the finite sets of compatible contours in Λ∗, that is, closed self-avoiding and
pairwise mutually avoiding contours in Λ∗.

Fixed the – b.c., for each contour γ there is an unique configuration σγ which
has γ as unique contour. We define the interior of γ, intγ, as the set of all i ∈ Z

2

such that, for σγ , we have σi = +1 and d(i, γ) > 1, where d denote the Euclidean
distance in R

2. We will use the notation intγ for the set of all i ∈ Z
2 for which

σi = +1 in σγ . The volume of γ is the cardinality of intγ, volγ = | intγ|.
Let σΛ be a configuration satisfying the – b.c.. We have already seen that

there is a finite set of contours associated to σΛ. For each contour γ all spins at
intγ \ intγ have the same value. We say that γ is of type + (resp. type –), if the
value of these spins are +1 ( resp. −1).

We define over the set of signed contours a function ξ given by

ξ(γ) =



































exp

(

−2βJ |γ| − 2β
∑

i∈ intγ

hi

)

, γ of type −;

exp

(

−2βJ |γ| + 2β
∑

i∈ intγ

hi

)

, γ of type +,

(7)

where |γ| denote the number of unit segments that compose the contour.
Denoting by Z−

Λ the partition function corresponding to the – b.c., it follows
from a straightfoward computation that:

Z−
Λ = 1 +

∑

n≥1

1

n!

∑

(γ1,...,γn)

Λ∗−compatibles

n
∏

k=1

ξ(γk). (8)



Phase Transition in Ising Model with Non-Uniform Magnetic Fields 5

We remark that the value ξ(γ) depends explicitly on the type of the contour,
which is different from the usual cluster expansion. Since

〈σi〉
β,h,−
Λ = 2 µβ,h,−

Λ ({σi = +1})− 1 (9)

if we prove that µβ,h,−
Λ ({σi = +1}) → 0, uniformly in Λ when β → ∞, we are

done.

Whenever σi = +1 there exists a contour type +, denoted by
+
γ, that involves

the site i. We use the notation
+
γ ⊙ i to indicate that

+
γ involves the site i. We say

that γ involves γ′, and we write γ ⊙ γ′, if any site i ∈ Z
d involved by γ′, it is also

involved by γ.
Before continuing the theorem’s proof we need the following lemma:

Lemma 2. Let {γ1, . . . , γn} be a collection of Λ∗-compatible signed contours. If
h ∈ ℓ1(Zd), then

e−2β‖h‖1

(

n
∏

k=1

e−2βJ |γk|

)

≤
n
∏

k=1

ξ(γk) ≤ e2β‖h‖1

(

n
∏

k=1

e−2βJ |γk |

)

.

Proof: For a fixed collection of Λ∗-compatible signed contours {γ1, . . . , γn} the rela-
tion involving ⊙ determines naturally a partial order in this set. Let {γr1 , . . . , γrk}
be the set of all maximal elements with respect to this partial order. So we have
that

n
∏

k=1

ξ(γk) =

k
∏

l=1

ξ(γrl)





∏

{j:γrl⊙γj}

ξ(γj)



 , (10)

where the product over an empty set is equal to one. If {j : γrl ⊙ γj} = ∅ for all
1 ≤ l ≤ k, the upper and lower bounds claimed in the lemma are straightforward
since intγrl ∩ intγrm = ∅ whenever 1 ≤ m < l ≤ k. On the other hand, for
each 1 ≤ l ≤ k such that the set {j : γrl ⊙ γj} is not empty, consider the graph
Gl = (Vl, El), where the vertex set Vl = {γrl} ∪ {γj : γrl ⊙ γj} and the edges set
El is the collection of all unordered pairs {γj , γl} such that if γm ⊙ γj or γm ⊙ γl,
then γm⊙ γj and γm ⊙ γl, i.e., there are no intermediate contours between γj and
γl.

From the definition of the contours and the edges set it is easy to see that Gl

is a rooted tree where the root is the most exterior contour, i.e. this contour is
not in the interior of any other contour. For γj , γs ∈ Vl, we denote by d(γj , γs)
the usual graph distance in Gl. Let TVl be the set of vertices in Vl that are in the
last generation of the tree, i.e., the vertices with degree one on Gl and that the
distance to the root is maximal. Consider the following partition of

TVl =

t(l)
⋃

j=1

TVl(j),

where t(l) is the cardinality of the set {γ ∈ Vl : d(γ, TVl) = 1} and for each
1 ≤ j ≤ t(l), the sets TVl(j) = {γj1, . . . , γjrj(l)} are the maximal subsets of TVl
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possesing the same parent γPl(j). By rearranging, the product (10) can be written
as

k
∏

l=1





t(l)
∏

j=1



ξ(γPj(l))
∏

γ∈TVl(j)

ξ(γ)





∏

γ∈G̃l

ξ(γ)



 , (11)

where G̃l is the tree subgraph of Gl induced by the vertices

Vl\(TVl ∪ {γP1(l), . . . , γPt(l)(l)}).

Observe that the value of the function ξ at the root γrl appears in the product
∏

γ∈G̃l
ξ(γ) when the graph G̃l is not empty. Putting

Sl(j) = intγPj(l) \
⋃

γ∈TVj(l)

intγ,

it follows from the definition of ξ, independent of the sign of the contour γPj(l),
that the following bounds hold:

e
−2β

∑
i∈Sl(j)

hi







∏

{γk :γk∈TVl(j)∪{γPj (l)
}}

e−2βJ |γk |






≤ ξ(γPj(l))

∏

γ∈TVl(j)

ξ(γ),

and

ξ(γPj(l))
∏

γ∈TVl(j)

ξ(γ) ≤ e
+2β

∑
i∈Sl(j)

hi







∏

{γk:γk∈TVl(j)∪{γPj (l)
}}

e−2βJ |γk|






.

Proceeding as above, for each G̃l, we get new Sl(j)’s that are disjoint for the
ones previously defined. So using the reasoning iteratively we finish the proof. The
proof ends when each of G̃l is only the root γrl or the root γrl and the elements
connected to it.

To finish the proof of the theorem we use the lemma above and, by the contour
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representation, we get the following upper bounds for µβ,h,−
Λ ({σi = +1}):

µβ,h,−
Λ ({σi = +1}) ≤ µβ,h,−

Λ ({∃
+
γ ⊙i}

)

≤

∑

+
γ⊙i

ξ(
+
γ)



1 +
∑

n≥1

∑

{γ1,...,γn}∩{
+
γ}=∅

Λ∗−compatibles

∏n
k=1 ξ(γk)





1 +
∑

n≥1

∑

{γ1,...,γn}
Λ∗−compatibles

∏n
k=1 ξ(γk)

≤

∑

+
γ⊙i

ξ(
+
γ)



e2β‖h‖1 +
∑

n≥1

∑

{γ1,...,γn}∩{
+
γ}=∅

Λ∗−compatibles

e2β‖h‖1
(
∏n

k=1 e
−2βJ |γk|

)





e−2β‖h‖1 +
∑

n≥1

∑

{γ1,...,γn}
Λ∗−compatibles

e−2β‖h‖1
(
∏n

k=1 e
−2βJ |γk|

)

≤
∑

+
γ⊙i

ξ(
+
γ)e4β‖h‖1 ≤

∑

γ⊙i

exp

(

−2βJ |γ| + 2β
∑

i∈ intγ

hi + 4β‖h‖1

)

. (12)

Using the last inequality and |γ| ≥ 4, we obtain

µβ,h,−
Λ ({σi = +1}) ≤

∑

n≥4

exp (−2β(Jn − 3‖h‖1))n3
n. (13)

Taking J such that J > 3‖h‖1, we conclude that µ
β,h,−
Λ ({σi = +1}) → 0 when

β → ∞, uniformly in Λ.
The case h ≤ 0 (hi ≤ 0,∀ i ∈ Z

2) with h ∈ ℓ1(Z
2) follows from the first case

and the FKG inequality. For an arbitrary field h in ∈ ℓ1(Z
2) we use FKG and

reduce the problem to one of the previous cases.

Corollary. For all the magnetic field h ∈ ℓ1(Z
d), the Ising model presents a

firts-order phase transition.

Proof: First replace the fields hi by zero, at all sites of a finite large enough
region Γ, in order to have J > 3‖h̃‖1, where h̃ denotes the modified magnetic
field. Thus there are two different measures µ− and µ+, by Theorem 1. Now, take
the local function A(σ) =

∑

i∈Γ hiσi. For any local function f : Ω → R we have
that

µ−(fe
βA) :=

∫

Ω
f(σ)eβA(σ)dµ− = lim

ΛրZd

〈f〉β,h,−Λ

〈e−β
∑

i∈Γ hiσi〉β,h,−Λ

=
〈f〉β,h,−

〈e−β
∑

i∈Γ hiσi〉β,h,−
.

Analogously for the + boundary condition.
Suppose by absurd that the model with the magnetic field h does not present

a first-order phase transition, thus for any β > 0 fixed and for all local function f
we have 〈f〉β,h,− = 〈f〉β,h,+. Applying this equality for f(σ) = e−βA(σ), we get

〈e−β
∑

i∈Γ hiσi〉β,h,− = 〈e−β
∑

i∈Γ hiσi〉β,h,+.
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So it follows from the above equalities that µ−(fe
A) = µ+(fe

A) for any β > 0
and for any local function f , which is in contradiction with Theorem 1 by taking
β > 0 sufficiently large and f(σ) = σie

−A(σ).

Remark: In the above argument we show how we can work with contours in a
non-symmetric set up and also illustrate that a finite-energy, (quasi-)local change
in a infinite system does not change global properties, such as (non)uniqueness of
the Gibbs state. In fact, the summability guarantees that this proof works but,
it is not a necessary condition for the phenomenon. For the Semi-Infinite Ising
Model on Z× Z+ Fröhlich and Pfister [4] showed that there are two Gibbs states
at sufficiently low temperature with a constant magnetic field h only over the sites
in the boundary of the lattice and, as we already mentioned before, Basuev [1]
obtained a phase transition in a more interesting case, where the magnetic field is
constant at all sites of the lattice Z

2 × Z+.

4 Absence of Phase Transition

In this section we show the absence of phase transition in the non-summable case
under condition that the magnetic field satisfies lim inf hi > 0 for positive fields
and lim suphi < 0 for negative ones. Although the proofs of the Lemma 3 and
Theorem 4 below are presented for the hypercubic lattice, they are the same for
any quasi-transitive connected amenable graph with uniformly bounded degree
due the Theorem 5 of [7]. For the proof of the Theorem 4, in this section, we
follow close [3].

Lemma 3. There is no phase transition in ferromagnetic Ising models with uni-
form nonzero external magnetic field outside of a finite volume.

Proof: Let h the magnetic field and Λ0 ⊂ Z
d a finite set such that, hi = h for

all i /∈ Λ0 and h ∈ R\{0}. To show absence of phase transition for this model it is
enough to show that 〈σi〉

β,h,− = 〈σi〉
β,h,+ for all β > 0 and i ∈ Z

d.

Consider Λ0 = {k} ⊆ Λ ⊂ Z
d, from now 〈 . 〉β,h,ωΛ and Zβ,h,ω

Λ denote respectively
the expected value and the partition function with respect to the Gibbs measure
defined by the Hamiltonian (1) with boundary condition ω and constant magnetic
field h. It follows from the definition that, for all i ∈ Λ

〈σi〉
β,h,ω
Λ = 〈σi · e

β(hk−h)σk〉β,h,ωΛ

Zβ,h,ω
Λ

Zβ,h,ω
Λ

. (14)

We know that the expected value 〈σi · e
β(hk−h)σk〉β,h,ωΛ is independent of the

boundary conditions in the thermodynamical limit. So, we need to show that
Zβ,h,ω
Λ /Zβ,h,ω

Λ it is also independent of the boundary conditions when Λ ր Z
d.

In order to evaluate the limit of the above ratio we will need to consider
boundary conditions in Λ\{k}. We define ω1 as (ω1)i = ωi for all i ∈ ∂Λ with
(ω1)k = +1 and, ω2 by (ω2)i = ωi for all i ∈ ∂Λ and (ω2)k = −1 so

Zβ,h,ω
Λ

Zβ,h,ω
Λ

=
eβh · Zβ,h,ω1

Λ\{k} + e−βh · Zβ,h,ω2

Λ\{k}

eβhk · Zβ,h,ω1

Λ\{k} + e−βhk · Zβ,h,ω2

Λ\{k}

(15)
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To show that the above expression in the thermodynamic limit is independent
of the boundary condition ω, it is enough to show that Zβ,h,ω2

Λ\{k} /Z
β,h,ω1

Λ\{k} does not

depend on ω1 and ω2. To do this we take i = k in (14) and hk → +∞, and we
obtain

1 = µβ,h,ω
Λ ({σk = +1}) lim

hk→∞



eβ(hk−h)
eβh · Zβ,h,ω1

Λ\{k} + e−βh · Zβ,h,ω2

Λ\{k}

eβhk · Zβ,h,ω1

Λ\{k} + e−βhk · Zβ,h,ω2

Λ\{k}





= µβ,h,ω
Λ ({σk = +1})



1 + e−2βh ·
Zβ,h,ω2

Λ\{k}

Zβ,h,ω1

Λ\{k}





for all finite set Λ containing k. Then,

lim
ΛրZd

Zβ,h,ω2

Λ\{k}

Zβ,h,ω1

Λ\{k}

= e2βh
µβ,h,ω({σk = −1})

µβ,h,ω({σk = +1})
(16)

and the argument follows by induction in |Λ0|.

Theorem 4. If h ∈ ℓ∞(Zd) is such that lim inf i∈Zd hi > 0, then the Ising model
with external field h has no phase transition.

Proof: We omit the parameter β since the argument is valid for all β > 0.
Let be h = supi∈Zd hi, h = lim inf i∈Zd hi and ε a positive number such that
0 < ε < h/2. We denote by Λ ⊂ Z

d a finite subset containing {i ∈ Z
d; |hi| < ε},

hΛ the restriction of the external field h to the volume Λ, hΛ the constant magnetic
field in the set Λ with the value h, analogously for h and hε

Λ the constant magnetic
field taking values h− ε. It follows from Fundamental Theorem of Calculus that
for any finite Γ ⊂ Z

d with Λ ⊂ Γ, we have that the difference

〈σi〉
hΛ,hΓ\Λ,+

Γ − 〈σi〉
hΛ,h

ε
Γ\Λ,−

Γ

is equal to

β

∫ h

h−ε

∑

j∈Γ\Λ

〈σi;σj〉
hΛ,xΓ\Λ,+

Γ dx+ 〈σi〉
hΛ,h

ε
Γ\Λ,+

Γ − 〈σi〉
hΛ,h

ε
Γ\Λ,−

Γ .

By lemma 3 we know that there is no phase transition for the ferromagnetic
models with uniform nonzero magnetic field outside of a finite volume. Then, by
the FKG inequality taking the limit when Γ ր Z

d we have:

0 ≤ 〈σi〉
hΛ,hZd\Λ

,+
− 〈σi〉

hΛ,h
ε

Zd\Λ
,−

= lim
ΓրZd

β

∫ h

h−ε

∑

j∈Γ\Λ

〈σi;σj〉
hΛ,xΓ\Λ,+

Γ dx

Now, taking the limit when Λ ր Z
d we obtain:
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0 ≤ 〈σi〉
h,+ − 〈σi〉

h,− ≤ lim
ΛրZd

lim
ΓրZd

β

∫ h

h−ε

∑

j∈Γ\Λ

〈σi;σj〉
hΛ,xΓ\Λ,+

Γ dx

Since the truncated correlation functions are non-increasing in hk(k ∈ Z
d), we

get

0 ≤ 〈σi〉
h,+ − 〈σi〉

h,− ≤ lim
ΛրZd

lim
ΓրZd

β

∫ h

h−ε

∑

j∈Γ\Λ

〈σi;σj〉
hε
Λ,xΓ\Λ,+

Γ dx

= lim
ΛրZd

lim
ΓրZd

〈σi〉
hε
Λ,hΓ\Λ,+

Γ − 〈σi〉
hε
Λ,h

ε
Γ\Λ,+

Γ

≤ lim
ΛրZd

〈σi〉
hε
Λ,+

Λ − 〈σi〉
h−ε,+

= 0

The last inequality comes again from FKG. By standard arguments [8], there
is only one Gibbs state for the model. The analogous result holds when the mag-
netic field is negative.

Acknowledgments

It is a pleasure to thank Aernout Van Enter for many valuable comments and
references. The authors also thank to Roberto Fernández for several useful refer-
ences and thanks to Luiz Renato Fontes, Arnaud Le Ny and specially Sacha Friedli,
who point out to us an error in the preliminary version, for fruitful discussions
personally and by mail. Rodrigo Bissacot was supported by Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico (CNPq) and Leandro Cioletti was
supported by Fundação de Empreendimentos Cient́ıficos e Tecnológicos(Finatec).

References

[1] Basuev, A. G.: Ising Model in Half-Space: A Series of Phase Transitions in
Low Magnetic Fields. Theor. Math. Phys. 153, 1539-1574 (2007).

[2] Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics, Grundlehren
der Mathematischen Wissenschaften, vol. 271, New York: Springer, (1985).

[3] Fontes, L.R.G. and Jordão Neves, E.: Phase Uniqueness and Correlation
Length in Diluted-Field Ising Models. J. Stat. Phys. 80, 1327-1339 (1995).
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